# What’s are the preventive strategies for workplace violence

Answer: Adopt a formal workplace violence prevention training policy and program, and communicate it to employees. Have managers take an active role in employee awareness of the plan; make sure they are alert to warning signs of workplace violence and know how to respond

## Related Questions

for a rankine cycle with one stage of reheat between turbines, there are how many relevant pressures?

The four relevant pressures in a Rankine cycle with one stage of reheat are P1, P2, P3, and P4.

For a Rankine cycle with one stage of reheat between turbines, there are typically four relevant pressures:

1. Boiler pressure (P1): This is the pressure at which the water is heated in the boiler before entering the first turbine.
2. High-pressure turbine outlet pressure (P2): This is the pressure at the outlet of the first turbine before the steam is sent to the reheater.
3. Reheat pressure (P3): This is the pressure at which the steam is reheated before entering the second turbine.
4. Low-pressure turbine outlet pressure (P4): This is the pressure at the outlet of the second turbine, which is also the condenser pressure.

To know more about Rankine cycle visit:

brainly.com/question/30985136

#SPJ11

Select the true statements regarding rigid bars. a. A rigid bar can bend but does not change length.
b. A rigid bar does not bend regardless of the loads acting upon it.
c. A rigid bar deforms when experiencing applied loads.
d. A rigid bar is unable to translate or rotate about a support.
e. A rigid bar represents an object that does not experience deformation of any kind.

option b and E are true

Explanation:

A lever is an example of a rigid bar that can rotate around a given point. In a rigid material, the existing distance does not change whenever any load is placed on it. In such a material, there can be no deformation whatsoever. Wit this explanation in mind:

option a is incorrect, given that we already learnt that no deformation of any kind happens in a rigid bar.

option b is true. A rigid bar remains unchanged regardless of the load that it carries.

option c is incorrect, a rigid bar does not deform with loads on it

option d is incorrect. A lever is a type of rigid bar, a rigid bar can rotate around a support.

option e is true. A rigid bar would not experience any deformation whatsoever.

1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty percent of the flow is extracted at 1000 kPa to a feedwater heater and the remainder flows out at 200 kPa. Find the two exit temperatures and the turbine power output.

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

How much heat is lost through a 3’× 5' single-pane window with a storm that is exposed to a 60°F temperature differential?A. 450 Btu/hB. 900 Btu/hC. 1350 Btu/hD. 1800 Btu/h

A. 450 btu/h

Explanation:

We solve this problem by using this formula:

Q = U x TD x area

U = U value of used material

TD = Temperature difference = 60°

Q = heat loss

Area = 3x5 = 15

We first find U

R = 1/u

2 = 1/U

U = 1/2 = 0.5

Then when we put these values into the formula above, we would have:

Q = 0.5 x 15 x 60

Q = 450Btu/h

Therefore 450btu/h is the answer

A technician has been dispatched to assist a sales person who cannot get his laptop to display through a projector. The technician verified the video is displaying properly on the laptop's built-in screen. Which of the following is the next step the technician should take?

Answer:verify proper cable is hooked between laptop and projector. HDMI ports or 15 pin video output to input.

And laptop is selected to output to respective video output.

Explanation:

A mass of 5 kg of saturated liquid-vapor mixture of water is contained in a piston-cylinder device at 125 kPa. Initially, 2 kg of the water is in the liquid phase and the rest is in the vapor phase. Heat is now transferred to the water, and the piston, which is resting on a set of stops, starts moving when the pressure inside reaches 300 kPa. Heat transfer continues until the total volume increases by 20%. (a) Determine the initial temperature. (b) Determine the final temperature. (c) Determine the mass of liquid water when the piston first starts moving. (d) Determine the work done during this process in kJ.

See attached pictures.

Explanation:

See attached pictures for detailed explanation.